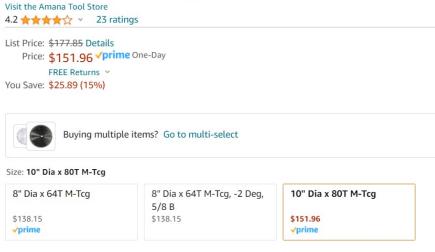


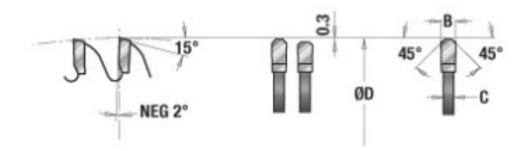
Trimfinity EPS Crosscut, Mitering, Beveling, Rip-Cut, Routering with Power Tools and Coping Guide

Trimfinity Moulding using EPS plastics will provide a clean, crisp cut using a quick chop cut or when possible, to minimize the surface area when cutting into the material. Typically choosing the more TPI (teeth per inch) finer the finish for your blades.

EPS Materials w/ Standard Fine Finishing Blade for Moulding	Thin, Less Wide (QTR Rnd, OSC, Caps, Lattice, Stops,etc)	Hollowed Profile up to to 3-1/4 wide (713, 356, 623)	Hollowed Profile from 3-1/2 Wide and up (RB03,163)	Solid Profile (Craftsman, Jambs,etc)	
Cross Cutting: Fine Finish Circular Saw with carbide tip	quick chop cut	quick chop cut	Best cut is to push thru with sliding saw minimizing area.	Best cut is to push thru with sliding saw minimizing area.	
Mitering: Fine Finish Circular Saw with Carbide tip teeth	quick chop cut	quick chop cut	Best cut is to push thru with sliding saw minimizing area.	Best cut is to push thru with sliding saw minimizing area.	
Beveling: Fine Finish Circular Saw with Carbide tip teeth	quick chop cut	quick chop cut	Best cut is to push thru with sliding saw minimizing area.	Best cut is to push thru with sliding saw minimizing area.	
Jigsaw High Carbon Steel (HCS)	Cuts smooth	Cuts smooth	Cuts smooth	Cuts smooth	
Rip-Cut (M-TCG) and a 2° negative hook angle with carbide tip	see pg 3 for optimal performance	see pg 3 for optimal performance	see pg 3 for optimal performance	see pg 3 for optimal performance	
Routing Carbide-tipped router bits	Cuts smooth	Cuts smooth	Cuts smooth	Cuts smooth	
Coping: Cuts smooth High Carbon Steel blade, 15		Cuts smooth	Cuts smooth	Cuts smooth	

Standard Finish blades when rip-cutting the MCS Trimfinity moulding may result in "chip welding" where the surface area creates friction melting the material.


10" Saw Blades


Suggest for Rip-Cutting

Amana Tool - LB10801C Electro-BLU Carbide Tipped Non-Melt Plastic 10" Dia x 80T M-Tcg

When cutting acrylics and plastics, "chip-welding" – a melting of the material is a concern. But not with these Non-Melt blades. With a modified triple-chip grind (M-TCG) and a 2° negative hook angle, they produce less heat than a standard blade, leaving a crisp and smooth edge.

Amana Blade Offerings (other sizes also avail)

(D) Diameter 🔻	Teeth 🖣	Tooth Grind 🍦	Hook Angle 🍦	Kerf (B)	Plate (C)	(d) Bore 🏺	Pinholes 🔷	Tool No.
220mm	64	M-TCG	-2°	.126 (3.2mm)	.079 (2.0mm)	30mm	2/7/42	LB220T641
8 (200mm)	64	M-TCG	-2°	.098 (2.5mm)	.070 (1.8mm)	5/8	-	LB86401
8 (200mm)	64	M-TCG	-2°	.098 (2.5mm)	.070 (1.8mm)	5/8	-	LB86401C
10 (250mm)	80	M-TCG	-2°	.100 (2.5mm)	.070 (1.8mm)	5/8	-	LB10801
10 (250mm)	80	M-TCG	-2°	.100 (2.5mm)	.070 (1.8mm)	30mm	2/7/42, 2/9/46 & 2/10/60	LB10801-30
12 (300mm)	96	M-TCG	-2°	.125 (3.2mm)	.102 (2.6mm)	1	-	LB12961
12 (300mm)	96	M-TCG	-2°	.125 (3.2mm)	.102 (2.6mm)	30mm	2/7/42, 2/9/46 & 2/10/60	LB12961-30
14 (350mm)	108	M-TCG	-2°	.145 (3.7mm)	.118 (3.0mm)	1	-	LB14108
16 (400mm)	120	M-TCG	-2°	.145 (3.7mm)	.118 (3.0mm)	1	-	LB16121
16 (400mm)	120	M-TCG	-2°	.145 (3.7mm)	.118 (3.0mm)	1	-	LB16121